Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Fa-Qian Liu, ${ }^{\text {a }}$ * Wei-Hua Li, ${ }^{\text {b }}$ Lu-De Lu, ${ }^{\text {a }}$ Xu-Jie Yang, ${ }^{\text {a }}$ Xin Wang $^{\text {a }}$ and Bao-Rong Hou ${ }^{\text {c }}$
${ }^{\text {a }}$ Materials Chemistry Laboratory, Nanjing University of Science and Technology, Nanjing 210094, People's Republic of China, ${ }^{\text {b }}$ College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266033, People's Republic of China, and 'Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, People's Republic of China

Correspondence e-mail: qdplastics@163.com

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.040$
$w R$ factor $=0.121$
Data-to-parameter ratio $=17.9$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0] Printed in Great Britain - all rights reserved

2-(Benzotriazol-1-yl)-2-(a-hydroxybenzyl)-N-phenylthioacrylamide

In the title compound, $\mathrm{C}_{21} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{OS}$, the dihedral angles between the planes of the benzotriazole and N-phenyl rings and the plane of the atoms that link these two rings are 79.56 (6) and $59.02(5)^{\circ}$, respectively, while that between the two benzene rings is $64.12(6)^{\circ}$. There are some inter- and intramolecular interactions in the crystal structure.

Comment

Triazole nuclei appear frequently in the structures of various natural products and biologically active compounds, notably thiamine (vitamin B), penicillins, and antibiotics such as micrococcin (James \& Watson, 1966). Triazole derivatives have also attracted considerable attention in industry and agriculture, because of their significant biological activities (Zhang et al., 2002). In this paper, we report the structure of the title compound, (I).

(I)

In compound (I) (Fig. 1), the bond lengths and angles are generally normal in the rings (Ji et al., 2002). The $\mathrm{C}=\mathrm{S}$ bond length in (I) is close to the typical $\mathrm{C}=\mathrm{S}$ double-bond length (Table 1). Atom C 2 lies in the plane of the benzotriazole ring, and atoms S1, N1, C1 and C2 are coplanar (plane P1). The dihedral angles formed by the benzotriazole and C16-C21 rings with $P 1$ are 79.56 (6) and $59.02(5)^{\circ}$, respectively. The $\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 16-\mathrm{C} 17, \mathrm{~N} 3-\mathrm{N} 2-\mathrm{C} 2-\mathrm{C} 1, \mathrm{~N} 3-\mathrm{N} 2-\mathrm{C} 2-\mathrm{C} 3$ and $\mathrm{N} 2-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$ torsion angles are 54.8 (2), 84.17 (18), 92.39 (17), $3.6(2)^{\circ}$, respectively.

The most interesting structural features of the title compound are the $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ inter- and intramolecular hydrogen bonds, and the strong $\mathrm{O}-\mathrm{H} \cdots \mathrm{S}$ intramolecular interaction (Table 2). These interactions stabilize the structure of (I).

Received 10 December 2004 Accepted 20 December 2004 Online 8 January 2005

Figure 1
The structure of (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 35% probability level and H atoms are shown as small spheres of arbitrary radii.

Experimental

A mixture of α-(benzotriazol-1-yl)acetophenone ($1.34 \mathrm{~g}, 0.01 \mathrm{~mol}$), phenyl isothiocyanate ($2.42 \mathrm{~g}, 0.01 \mathrm{~mol}$), potassium hydroxide (0.4 g , 0.01 mol) and dimethylsulfoxide (50 ml) was stirred for 1 h at room temperature. The solution was then filtered, concentrated and purified by flash chromatography (silica gel, chloroform:cyclohexane, 5:1) to afford the title compound (yield $3.01 \mathrm{~g}, 80 \%$; m.p. $433-434 \mathrm{~K}$). Single crystals of (I) suitable for X-ray measurements were obtained by recrystallization from cyclohexane at room temperature. ${ }^{1} \mathrm{H}$ NMR (600 MHz , acetone- d_{6}): $16.09(1 \mathrm{H}, s, \mathrm{OH}), 9.68(1 \mathrm{H}, s, \mathrm{NH}-\mathrm{Ph}), 7.06-$ 8.07 ($14 \mathrm{H}, m, \mathrm{Ar}$). Analysis, calculated for $\mathrm{C}_{21} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{OS}$: C 70.76, H 4.52 , N 15.72%; found: C 70.81, H $4.60, \mathrm{~N} 15.68 \%$.

Crystal data

$\mathrm{C}_{21} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{OS}$
$M_{r}=372.45$
$M_{r}=372.45$
Monoclinic, $C 2 / c$
$a=19.089$ (3) \AA
$b=8.4715$ (11) \AA
$c=23.161$ (3) \AA
$\beta=90.315(2)^{\circ}$
$V=3745.4$ (9) \AA^{3}
$Z=8$

Data collection

Bruker SMART CCD area-detector diffractometer
φ and ω scans
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.892, T_{\text {max }}=0.966$
12321 measured reflections
$D_{x}=1.321 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 2238 reflections
$\theta=2.6-22.6^{\circ}$
$\mu=0.19 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Block, colourless
$0.46 \times 0.31 \times 0.18 \mathrm{~mm}$

4500 independent reflections
2680 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.023$
$\theta_{\text {max }}=28.0^{\circ}$
$h=-24 \rightarrow 25$
$k=-11 \rightarrow 11$
$l=-30 \rightarrow 20$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.040$
$w R\left(F^{2}\right)=0.121$
$S=1.06$
4500 reflections
252 parameters
H atoms treated by a mixture of independent and constrained refinement

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0561 P)^{2}\right. \\
& +0.3455 P] \\
& \text { where } P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \text { 。 } \\
& \Delta \rho_{\max }=0.16 \mathrm{e}_{\AA^{-3}} \\
& \Delta \rho_{\min }=-0.18 \mathrm{e}^{-3} \\
& \text { Extinction correction: none } \\
& \text { Extinction correction: none }
\end{aligned}
$$

Table 1
Selected geometric parameters ($\left(\AA^{\circ}{ }^{\circ}\right.$).

S1-C1	$1.6816(17)$	$\mathrm{N} 2-\mathrm{C} 2$	$1.4309(19)$
$\mathrm{N} 1-\mathrm{C} 1$	$1.324(2)$	$\mathrm{N} 3-\mathrm{N} 4$	$1.2920(18)$
$\mathrm{N} 1-\mathrm{C} 16$	$1.428(2)$	$\mathrm{N} 4-\mathrm{C} 11$	$1.374(2)$
$\mathrm{N} 2-\mathrm{N} 3$	$1.3609(17)$	$\mathrm{O} 1-\mathrm{C} 3$	$1.328(2)$
$\mathrm{N} 3-\mathrm{N} 2-\mathrm{C} 2-\mathrm{C} 3$	$-92.39(17)$	$\mathrm{N} 2-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$3.6(2)$
$\mathrm{N} 3-\mathrm{N} 2-\mathrm{C} 2-\mathrm{C} 1$	$84.17(18)$	$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 16-\mathrm{C} 17$	$54.8(2)$

Table 2
Hydrogen-bond geometry ($\AA{ }^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1-\mathrm{H} 1 A \cdots \mathrm{~S} 1$	$0.88(2)$	$2.05(2)$	$2.8752(17)$	$156(2)$
$\mathrm{N} 1-\mathrm{H} 1 \cdots \mathrm{~N} 2$	$0.855(12)$	$2.343(14)$	$2.7188(15)$	$107.0(11)$
$\mathrm{N} 1-\mathrm{H} 1 \cdots \mathrm{~N} 4^{\mathrm{i}}$	$0.855(12)$	$2.112(12)$	$2.9051(14)$	154

Symmetry codes (i) $-x+1, y,-z+\frac{1}{2}$.
H atoms on N or O atoms were located in a difference Fourier map and refined freely. All other H atoms were placed in calculated positions, with $\mathrm{C}-\mathrm{H}=0.93$ or $0.97 \AA$, and included in the final cycles of refinement using a riding model, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$.

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1999); software used to prepare material for publication: SHELXTL.

This project was supported by the National Natural Science Foundation of China (grant No. 40376023).

References

Bruker (1998). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (1999). SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
James, M. N. G. \& Watson, K. J. (1966). J. Chem. Soc. C, pp. 1361-1371.
Ji, B. M., Du, C. X., Zhu, Y. \& Wang, Y. (2002). Chin. J. Struct. Chem. 21, $252-$ 255.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Zhang, Y., Sun, X. W., Hui, X. P., Zhang, Z. X., Wang, Q. \& Zhang, Q. (2002). Chin. J. Chem. 20, 168-173.

[^0]: (C) 2005 International Union of Crystallography

