organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Fa-Qian Liu,^a* Wei-Hua Li,^b Lu-De Lu,^a Xu-Jie Yang,^a Xin Wang^a and Bao-Rong Hou^c

^aMaterials Chemistry Laboratory, Nanjing University of Science and Technology, Nanjing 210094, People's Republic of China, ^bCollege of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266033, People's Republic of China, and ^cInstitute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, People's Republic of China

Correspondence e-mail: qdplastics@163.com

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (C–C) = 0.003 Å R factor = 0.040 wR factor = 0.121 Data-to-parameter ratio = 17.9

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e. 2-(Benzotriazol-1-yl)-2-(α-hydroxybenzyl)-N-phenylthioacrylamide

In the title compound, $C_{21}H_{16}N_4OS$, the dihedral angles between the planes of the benzotriazole and *N*-phenyl rings and the plane of the atoms that link these two rings are 79.56 (6) and 59.02 (5)°, respectively, while that between the two benzene rings is 64.12 (6)°. There are some inter- and intramolecular interactions in the crystal structure. Received 10 December 2004 Accepted 20 December 2004 Online 8 January 2005

Comment

Triazole nuclei appear frequently in the structures of various natural products and biologically active compounds, notably thiamine (vitamin B), penicillins, and antibiotics such as micrococcin (James & Watson, 1966). Triazole derivatives have also attracted considerable attention in industry and agriculture, because of their significant biological activities (Zhang *et al.*, 2002). In this paper, we report the structure of the title compound, (I).

In compound (I) (Fig. 1), the bond lengths and angles are generally normal in the rings (Ji *et al.*, 2002). The C=S bond length in (I) is close to the typical C=S double-bond length (Table 1). Atom C2 lies in the plane of the benzotriazole ring, and atoms S1, N1, C1 and C2 are coplanar (plane *P*1). The dihedral angles formed by the benzotriazole and C16–C21 rings with *P*1 are 79.56 (6) and 59.02 (5)°, respectively. The C1–N1–C16–C17, N3–N2–C2–C1, N3–N2–C2–C3 and N2–C2–C3–C4 torsion angles are 54.8 (2), 84.17 (18), 92.39 (17), 3.6 (2)°, respectively.

The most interesting structural features of the title compound are the $N-H\cdots N$ inter- and intramolecular hydrogen bonds, and the strong $O-H\cdots S$ intramolecular interaction (Table 2). These interactions stabilize the structure of (I).

Printed in Great Britain - all rights reserved

© 2005 International Union of Crystallography

Figure 1

The structure of (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 35% probability level and H atoms are shown as small spheres of arbitrary radii.

Experimental

A mixture of α -(benzotriazol-1-yl)acetophenone (1.34 g, 0.01 mol), phenyl isothiocyanate (2.42 g, 0.01 mol), potassium hydroxide (0.4 g, 0.01 mol) and dimethylsulfoxide (50 ml) was stirred for 1 h at room temperature. The solution was then filtered, concentrated and purified by flash chromatography (silica gel, chloroform:cyclohexane, 5:1) to afford the title compound (yield 3.01 g, 80%; m.p. 433-434 K). Single crystals of (I) suitable for X-ray measurements were obtained by recrystallization from cyclohexane at room temperature. ¹H NMR (600 MHz, acetone-d₆): 16.09 (1H, s, OH), 9.68 (1H, s, NH-Ph), 7.06-8.07 (14H, m, Ar). Analysis, calculated for C₂₁H₁₆N₄OS: C 70.76, H 4.52, N 15.72%; found: C 70.81, H 4.60, N 15.68%.

Crystal data

$C_{21}H_{16}N_4OS$	$D_x = 1.321 \text{ Mg m}^{-3}$
$M_r = 372.45$	Mo $K\alpha$ radiation
Monoclinic, C2/c	Cell parameters from 2238
a = 19.089 (3) Å	reflections
b = 8.4715 (11) Å	$\theta = 2.6-22.6^{\circ}$
c = 23.161 (3) Å	$\mu = 0.19 \text{ mm}^{-1}$
$\beta = 90.315(2)^{\circ}$	T = 293 (2) K
V = 3745.4 (9) Å ³	Block, colourless
Z = 8	$0.46 \times 0.31 \times 0.18 \ \mathrm{mm}$
Data collection	
Bruker SMART CCD area-detector	4500 independent reflections
diffractometer	2680 reflections with $I > 2\sigma(I)$
φ and ω scans	$R_{\rm int} = 0.023$
Absorption correction: multi-scan	$\theta_{\rm max} = 28.0^{\circ}$
(SADABS; Sheldrick, 1996)	$h = -24 \rightarrow 25$
$T_{\rm min} = 0.892, \ T_{\rm max} = 0.966$	$k = -11 \rightarrow 11$

12 321 measured reflections

4500 independent reflecti	ons
2680 reflections with $I > 2$	$2\sigma(I)$
$R_{\rm int} = 0.023$	
$\theta_{\rm max} = 28.0^{\circ}$	
$h = -24 \rightarrow 25$	
$k = -11 \rightarrow 11$	
$l = -30 \rightarrow 20$	

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.0561P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.040$	+ 0.3455P]
$wR(F^2) = 0.121$	where $P = (F_0^2 + 2F_c^2)/3$
S = 1.06	$(\Delta/\sigma)_{\rm max} < 0.001$
4500 reflections	$\Delta \rho_{\rm max} = 0.16 \ {\rm e} \ {\rm \AA}^{-3}$
252 parameters	$\Delta \rho_{\rm min} = -0.18 \text{ e } \text{\AA}^{-3}$
H atoms treated by a mixture of independent and constrained refinement	Extinction correction: none

Table 1

Selected geometric parameters (Å, °).

S1-C1	1.6816 (17)	N2-C2	1.4309 (19)
N1-C1	1.324 (2)	N3-N4	1.2920 (18)
N1-C16	1.428 (2)	N4-C11	1.374 (2)
N2-N3	1.3609 (17)	O1-C3	1.328 (2)
N3-N2-C2-C3	-92.39 (17)	N2-C2-C3-C4	3.6 (2)
N3-N2-C2-C1	84.17 (18)	C1-N1-C16-C17	54.8 (2)

Table 2	
Hydrogen-bond geometry (Å, °)	

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$O1-H1A\cdots S1$	0.88 (2)	2.05 (2)	2.8752 (17)	156 (2)
$N1 - H1 \cdot \cdot \cdot N2$	0.855 (12)	2.343 (14)	2.7188 (15)	107.0 (11)
$N1 - H1 \cdots N4^{i}$	0.855 (12)	2.112 (12)	2.9051 (14)	154

Symmetry codes (i) -x + 1, y, $-z + \frac{1}{2}$.

H atoms on N or O atoms were located in a difference Fourier map and refined freely. All other H atoms were placed in calculated positions, with C-H = 0.93 or 0.97 Å, and included in the final cycles of refinement using a riding model, with $U_{iso}(H) = 1.2U_{eq}(C)$.

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1999); software used to prepare material for publication: SHELXTL.

This project was supported by the National Natural Science Foundation of China (grant No. 40376023).

References

Bruker (1998). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.

- Bruker (1999). SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
- James, M. N. G. & Watson, K. J. (1966). J. Chem. Soc. C, pp. 1361-1371.
- Ji, B. M., Du, C. X., Zhu, Y. & Wang, Y. (2002). Chin. J. Struct. Chem. 21, 252-255.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Zhang, Y., Sun, X. W., Hui, X. P., Zhang, Z. X., Wang, Q. & Zhang, Q. (2002). Chin. J. Chem. 20, 168-173.